Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing
نویسندگان
چکیده
In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.
منابع مشابه
Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor
Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow ...
متن کاملChalcogenide Glass Materials for Integrated Infrared Photonics
Chalcogenide glasses (ChGs) are amorphous compounds containing the chalcogen elements (S, Se, Te) and exhibit wide infrared transparency windows. They are easy to synthesize in bulk and thin film forms and their compositional flexibility allows tuning of optical properties such as refractive index making them ideal for infrared photonics. We have studied the material attenuation in ChGs that ar...
متن کاملNovel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter
Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...
متن کاملBiosensing using Porous Silicon Photonic Bandgap Structures
Photonic bandgap (PBG) structures have remarkable optical properties that can be exploited for biosensing applications. We describe the fabrication of 1-D PBG biosensors using porous silicon. The optical properties of porous silicon PBGs are sensitive to small changes of refractive index in the porous layers, which makes them a good sensing platform capable of detecting binding of the target mo...
متن کاملSensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing
A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is high...
متن کامل